THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050A Tutorial 3

1. Evaluate the limit

$$\lim_{n} \frac{5n^2 + 2n + 1}{3n^2 + n + 2}$$

by definition.

- 2. Let $A \subseteq \mathbb{R}$. Suppose $sup A = \alpha \in \mathbb{R}$.
 - (a) Show that there exists a sequence (a_n) in A converging to α .
 - (b) Show that there exists a monotone increasing sequence (b_n) in A converging to α .
- 3. Let a > 0. Show that

$$\lim_{n} \frac{a^n}{n!} = 0$$

- 4. Let $p \in \mathbb{N}$ and $b \in \mathbb{R}$ satisfy 0 < b < 1. Show that $\lim(n^p b^n) = 0$.
- 5. Let (x_n) be a sequence of positive real numbers. Suppose $\lim \sqrt[n]{x_n} = L$, where L is a non-negative real number.
 - (a) If $0 \le L < 1$, show that $\lim x_n = 0$.
 - (b) If L > 1, show that (x_n) is divergent.
 - (c) What happens if L = 1?
- 6. Let (x_n) be a sequence of positive real numbers. Suppose $\lim x_{n+1}/x_n = L$, where L is a non-negative real number. Show that $\lim \sqrt[n]{x_n} = L$.